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In the past, methods to subtype or biotype patients using brain imaging data have been developed. However, 

it is unclear whether and how these trained machine learning models can be successfully applied to population 

cohorts to study the genetic and lifestyle factors underpinning these subtypes. This work, using the Subtype 

and Stage Inference (SuStaIn) algorithm, examines the generalisability of data-driven Alzheimer’s disease (AD) 

progression models. 

We first compared SuStaIn models trained separately on Alzheimer’s disease neuroimaging initiative (ADNI) 

data and an AD-at-risk population constructed from the UK Biobank dataset. We further applied data harmoniza- 

tion techniques to remove cohort effects. Next, we built SuStaIn models on the harmonized datasets, which were 

then used to subtype and stage subjects in the other harmonized dataset. 

The first key finding is that three consistent atrophy subtypes were found in both datasets, which match the 

previously identified subtype progression patterns in AD: ‘typical’, ‘cortical’ and ‘subcortical’. Next, the subtype 

agreement was further supported by high consistency in individuals’ subtypes and stage assignment based on 

the different models: more than 92% of the subjects, with reliable subtype assignment in both ADNI and UK 

Biobank dataset, were assigned to an identical subtype under the model built on the different datasets. The 

successful transferability of AD atrophy progression subtypes across cohorts capturing different phases of disease 

development enabled further investigations of associations between AD atrophy subtypes and risk factors. Our 

study showed that (1) the average age is highest in the typical subtype and lowest in the subcortical subtype; 

(2) the typical subtype is associated with statistically more-AD-like cerebrospinal fluid biomarkers values in 

comparison to the other two subtypes; and (3) in comparison to the subcortical subtype, the cortical subtype 

subjects are more likely to associate with prescription of cholesterol and high blood pressure medications. 

In summary, we presented cross-cohort consistent recovery of AD atrophy subtypes, showing how the same 

subtypes arise even in cohorts capturing substantially different disease phases. Our study opened opportunities for 

future detailed investigations of atrophy subtypes with a broad range of early risk factors, which will potentially 

lead to a better understanding of the disease aetiology and the role of lifestyle and behaviour on AD. 
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. Introduction 

Alzheimer’s disease (AD) is a global health and economic bur-

en affecting around 47 million individuals worldwide. Currently,

here exists only one FDA-approved drug with some disease-modifying

otential in a subset of patients. In general, a key confound
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hat prevents successful outcomes in most treatment trials to date

as been AD’s high variability in onset, mechanism, and clinical

xpression. 

In the literature, the amyloid cascade hypothesis ( Hardy and Hig-

ins, 1992 ; Selkoe and Hardy, 2016 ) posits that a build-up in the

myloid- 𝛽 protein is the pathological origin, followed by formation of
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ntracellular neurofibrillary tangles (NFTs) consisting of the tau protein,

ecline in brain glucose metabolism, atrophy of grey matter (in partic-

lar in the hippocampus) and finally cognitive decline ( Jack Jr et al.,

010 ). This theoretical model of biomarker progression has been sup-

orted by longitudinal studies conducted in asymptomatic mutations

arriers for autosomal dominant AD ( Bateman et al., 2012 ) and disease

rogression models applied to cross-sectional studies of sporadic, late-

nset AD ( Donohue et al., 2014 ; Young et al., 2014 ; Lorenzi et al., 2019 ;

oval et al., 2021 ; Venkatraghavan et al., 2019 ). However, the evolu-

ion of biomarkers in AD and many other brain disorders remains uncer-

ain and there is heterogeneity in the order in which biomarkers show

bnormality. For instance, different pattern of hypometabolism, brain

trophy and tau distribution have been linked to AD subtypes with dif-

erent cognitive profiles ( Laforce et al., 2014 ; Ossenkoppele et al., 2015 ,

016 ). 

Studies tackling the heterogeneity can be broadly categorised into

wo streams: staging methods that emphasize the temporal progres-

ions of disease process ( Bilgel et al., 2016 ; Donohue et al., 2014 ;

oung et al., 2014 ), and subtyping methods that focus on identify-

ng distinct groups of patients based on their phenotypic heterogene-

ty ( Nettiksimmons et al., 2010 ; Scheltens et al., 2017 ; Tijms et al.,

020 ; Whitwell et al., 2009 ). The recently developed Subtype and Stage

nference (SuStaIn) algorithm ( Young et al., al.,2018 ) is an unsuper-

ised learning technique that identifies disease progression subtypes

n cross-sectional data. It uniquely defines subtypes by a trajectory of

hange, thereby avoiding confounds of temporal change and pheno-

ypic difference. Using SuStaIn, Young et al. (2018) identified three

ata driven atrophy subtypes with distinct temporal progression pat-

erns based on cross-sectional brain MRI scans from the Alzheimer’s

isease Neuroimaging Initiative (ADNI) dataset. Furthermore, within

D, SuStaIn has been successfully used to identify different subtypes

f temporal progression of NFTs and amyloid plaques ( Aksman et al.,

020 ) as well as spatio-temporal spread of cortical tau ( Vogel et al.,

021 ). Beyond AD, SuStaIn has identified atrophy subtypes in ge-

etic frontotemporal dementia ( Young et al., 2018 , 2021 ) reflecting

he causative mutation, in multiple sclerosis ( Eshaghi et al., 2021 )

nd in Chronic Obstructive Pulmonary Disease ( Young et al., 2020 ).

he reason for the emergence of distinct disease subtypes in AD re-

ains elusive and is likely linked to genetic risk factors, co-morbidities,

nd environmental factors; many of which may act upstream of

myloid- 𝛽. 

While recent studies have uncovered many factors that increase the

isk for developing AD such as diabetes ( Andrews et al., 2020 ), blood

ressure complexity and variability ( Ma et al., 2019 ), various lifestyle

actors including smoking status, alcohol consumption, physical, social

nd leisure activities ( Lourida et al., 2019 ; Sommerlad et al., 2019 ;

ates et al., 2016 ) and genetic risk factors ( Kunkle et al., 2019 ), no

uch study has yet been performed for AD progression subtypes. One of

he challenges is that available datasets are either disease-focused (with

eep phenotyping using disease-related biomarkers, but lacking decades

f pre-clinical data) or are (longitudinal) population cohorts (with deep

henotyping on risk factors, but lacking disease-related biomarkers).

hus, neither dataset can be used to train subtyping tools and to ex-

lore early risk factors influencing subtype development. To tackle this

hallenge, we aim to connect datasets that offer windows on different

hases of disease development. We proposed to train atrophy-based sub-

yping models on disease-focused datasets such as ADNI and then ‘trans-

er’ them to population cohorts such as UK Biobank (UKBB). This is not a

orm of transfer learning in the traditional sense, where a model trained

n one dataset is adjusted to solve a different, related task on a dif-

erent dataset. To quantify the success of a model transfer, we define

onsistency of subtype and stage assignments at subject-level between

he transferred model and a reference model, which was trained on the

arget dataset. Successful model transfers will enable the investigation

f subtype-related risk factors that go beyond what can be discovered

n each dataset individually. 
2 
. Methods 

Working across the ADNI and UKBB datasets raises many interest-

ng research questions: (1) do consistent atrophy subtypes emerge from

hese two datasets? (2) how to eliminate cohort effects on biomarkers

or the two datasets while preserving biological information? (3) can

 model trained on ADNI effectively subtype and stage participants in

KBB? Fig. 1 gives a summary of the analysis strategy as well as the

atasets used for modelling and the models built on the datasets. We

riefly outline the overall organisation of the analysis with detailed in-

ormation being provided later in the Methods section. We addressed

hese issues by first comparing the SuStaIn models for measures of cor-

ical and subcortical volumes trained separately on the original ADNI

ataset and an AD-at-risk population constructed from UKBB dataset.

hen we applied the harmonization technique ComBat ( Johnson et al.,

007 ; Fortin et al., 2017 ) to these measures of cortical and subcorti-

al volumes to remove the cohort effect while preserving the biological

ovariates effects. We next trained the SuStaIn model on the two harmo-

ized datasets. We hypothesized that the ADNI dataset, due to its focus

n AD pathology, would constitute the better training set and that har-

onization would be critical to a successful model transfer. In total, we

rained four SuStaIn models: an ADNI SuStaIn, a UKBB SuStaIn, a harmo-

ized ADNI SuStaIn and a harmonized UKBB SuStaIn. For each subject

n the two datasets, we compared the subtype and stage assignments

nder three models, namely, the model trained on the original dataset

t belongs to and the models trained on the two harmonized datasets. In

ddition, to highlight the central role of harmonization, we also applied

he ADNI SuStaIn model to the unharmonized UKBB data and studied

he UKBB subjects’ subtype assignments under the ADNI SuStaIn model

nd under the UKBB SuStaIn model. 

Finally, to illustrate the usage of transferring SuStaIn models, we

tudied associations of AD subtypes with factors including: age, the CSF

iomarkers ( A 𝛽, tau and p-tau), and medication history variables. 

.1. ADNI dataset 

Data used in the preparation of this article was obtained from

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

 http://adni.loni.usc.edu ). ADNI was initially launched in 2004 led by

rincipal Investigator Michael W. Weiner, MD, funded as a public-

rivate partnership, that has made major contributions to AD research,

nabling the sharing of data between researchers around the world. The

rimary goal of ADNI has been to support studies of AD early detection

nd tracking disease’s progression using biomarkers including magnetic

esonance imaging (MRI), positron emission tomography (PET) and clin-

cal and neuropsychological assessments. For up-to-date information,

ee www.adni-info.org . 

Demographic information (i.e., age, sex, intracranial volume [ICV]

nd years of education), diagnostic labels (CN: cognitively normal, SMC:

ubstantial memory complaint, EMCI: early mild cognitive impairment,

MCI: late mild cognitive impairment, AD: Alzheimer’s disease), and

SF biomarker values ( A 𝛽, tau and p-tau) were extracted from the ta-

le ‘ADNIMERGE’. MRI-based features were extracted from T1-weighted

RIs obtained on 3T scanners at baseline for ADNI1/GO/2 participants.

he scans were processed with FreeSurfer 5.1 to obtain 80 cortical and

ubcortical regional measures based on the Desikan-Killiany atlas. Only

cans that passed overall quality control carried out by ADNI were

etained (see here for details: http://adni.loni.usc.edu/methods/mri-

ool/mri-analysis/ ). 

.2. UKBB dataset 

This research has been conducted using the UK Biobank under ap-

lication 70047. 

UK Biobank is a major UK collaborative research project that was

nitially established as a charitable company in 2003. The large-scale

http://adni.loni.usc.edu
http://www.adni-info.org
http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
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Fig. 1. Analysis overview . To explore the transferability of SuStaIn models we train models on different datasets with or without using feature harmonization (A). The 

training data for SuStaIn is either the original ADNI dataset or a high-risk AD population constructed from the UKBB. The resulting models are referred to as ADNI 

SuStaIn and UKBB SuStaIn models, respectively. This allows us to investigate how similar the models from the two datasets are (B). Next, these models were applied 

to assign subtype and stage to individuals within the same dataset to create a subtype and stage reference (C). To explore the transferability of SuStaIn models we 

first harmonized the features in the training datasets using ComBat (A). Then two additional SuStaIn models were trained on the harmonized versions of the two 

datasets. The resulting Harmonized ADNI SuStaIn and Harmonized UKBB SuStaIn models were used to assign subtype and stage to individuals within and across 

the two harmonized datasets (D). This setup enabled us to quantify the consistency of using un-harmonized and harmonized training data as well as assessing the 

consistency of subtype and stage assignment on the subject level. Our study suggested to use the Harmonized ADNI SuStaIn model for individual subtype and stage 

for both datasets for further subtype and risk factor association study. 
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iomedical database and research resource, containing in-depth genetic

nd follow-up health information from half a million UK participants

ged between 40 - 69 years, has enabled scientific researchers to in-

estigate meaningful associations between subgroups of the population

nd certain diseases, which further allows improvement of healthcare

ccording to the varying causes, prognosis and response to treatment of

ommon diseases including determining the risks of disease in different

roups, providing direct evidence of the scope for prevention and lead-

ng to the development of improved diagnostic methods and treatments.

or up-to-date information, see https://www.ukbiobank.ac.uk . 

We downloaded the regional volume data based on T1-weighted MRI

cans (80 cortical and subcortical volume metrics based on the Desikan-

illiany atlas) from UKBB. All scans were acquired on the same type

f 3T scanner (Siemens Skyra) and processed with FreeSurfer 6.0 and

reeSurfer 7.0 for cortical and for subcortical regions, respectively (see

ttp://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.pdf 

nd Alfaro-Almagro et al., 2018 ). Quality control was carried out prior

o the upload to UKBB and measures for the image data include signal-

o-noise-ratio for individual modalities and ‘discrepancy’ between a

iven pair of images after they have been co-registered (for details see:

ttps://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf ). To

efine control and AD-at-risk populations for the UKBB dataset, we

lso obtained AD-related variables including number of APOE- 𝜀 2 and

POE- 𝜀 4 alleles (from genotyping data), family history of dementia,

elf-reported neurological or psychiatric disorders and cognitive test

esults. From the eleven cognitive tests available in UKBB, we focused

n three tests that assess reaction time (UKBB RT), executive function

UKBB Trail Making Test A and B) and delayed memory (UKBB Prospec-

ive Memory Test [PMT]). The UKBB PMT is a simple test, where early

uring the touchscreen cognitive section, the participant is shown a

essage with an instruction for a later point in the session. The first

nd final answer, the history of attempts and the time it took to answer

he later question are recorded. To illustrate the practical benefit

f transferring trained SuStaIn models and being able to leverage

he deep phenotyping of other non-AD cohorts, we further obtained
3 
he data on cholesterol and blood pressure medication use from

KBB. 

.3. Defining control, case (training) study populations in ADNI and UKBB

For the ADNI dataset, the control set consisted of SMC and CN

ubjects with negative amyloid, where amyloid negativity was defined

ased on Florbetapir PET using the ADNI criteria, i.e., cortical SUVR

ormalized by whole cerebellum < 1 . 11. We regarded all the subjects

assing overall quality control and who were not in the control dataset

s cases (training set) for SuStaIn modelling. 

To assess the quality of the model transfer we require a SuStaIn

odel trained on the UKBB data to establish a subtyping reference. How-

ver, the UKBB dataset lacks AD-specific phenotyping such as diagnostic

abels and CSF or PET measurements. Consequently, we can neither de-

ne a control set free of AD pathology nor a training set with a clear

D pathology. However, SuStaIn is an unsupervised method and there-

ore it is sufficient to enrich the training for participants with beginning

D pathology to form AD-related subtypes. Likewise, the control set is

sed to standardize biomarkers and therefore needs only to be ‘mostly

ealthy’ as a small number of subjects exhibiting pathological aging is

nlikely to substantially affect the z-scoring. We therefore use the fol-

owing definitions for a ‘healthy control’ set and ‘AD-at-risk’ training

et. 

The control set of UKBB consisted of subjects not carrying the APOE-

 4 allele and without family history of dementia, or self-reported neu-

ological or psychiatric disorders (see Table S1 in the supplementary

aterials for the list of neurological or psychiatric disorders examined),

nd who performed well in all the AD-related cognitive tests accord-

ng to the following set of standards: (1) no error made in the two trail

aking tests; (2) time to complete the trail making path is less than the

KBB sample median; (3) the mean time to correctly identify items in

he reaction time test is less than UKBB sample median; (4) had the cor-

ect recall in the UKB PMT on first attempt and the time to answer is

ess than the first decile of the UKBB imaging subset. 

https://www.ukbiobank.ac.uk
http://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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Table 1 

ADNI and UKBB training and control sets demographics. 

ADNI Training ADNI Control UKBB Training UKBB Control UKBB All 

Total 632 163 616 262 36,494 

CN/SMC/Early MCI/Late MCI/AD 75/31/244/164/118 108/55/0/0/0 NA NA NA 

Female/Male 323/309 78/85 319/297 117/145 19,351/17,143 

APOE-4 (0/1/2/NA) 309/236/76/0 127/33/3/0 188/77/294/10 262/0/0/0 21,377/7662/662/1730 

APOE-2 (0/1/2/NA) NA NA 530/39/3/10 217/44/1/0 26,490/4642/169/1730 

AGE (min/med/max) 55/72/90 56/71/89 48/68/81 49/65/77 45/65/82 

Amyloid (neg/pos/NA) 174/366/92 163/0/0 NA NA NA 
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The ‘AD at-risk’ training population was defined as the union of two

ets: (1) subjects with high genetic risk (i.e., at least one family member

ith dementia and APOE- 𝜀 4 homozygotes); (2) subjects with high cog-

itive risk according to the following criteria: (i) number of errors made

n trail making is larger than four (which is the 90th percentile) and (ii)

ot being able to correctly recall on the first or the second attempt in

he UKBB PMT, plus self-reported AD subjects and excluding those with

on-AD self-reported neurological or psychiatric disorders. 

.4. Data harmonization and data pre-processing 

.4.1. Data harmonization 

Applying machine learning models, which were trained on one train-

ng dataset, to a new application dataset that was generated under dif-

erent conditions (scanner hardware, scanning protocols, and scan site

tc.) is hampered by a change in distribution in the derived features.

n our case, both ADNI and UKBB brain T1-weighted MRI data were

cquired on 3T scanners. However, the ADNI data was processed with

reeSurfer 5.1, while the UKBB data was processed with FreeSurfer 6.0

nd FreeSurfer 7.0. Both datasets provide the same 80 cortical and sub-

ortical volume metrics. In addition, there are biological differences,

.g., the ADNI cohort is older on average (see Table 1 for more details

n the demographics). Our first goal was to harmonize the 80 cortical

nd subcortical volume metrics with the aim to remove the differences

n cohorts due to variations in acquisition and processing and to preserve

he biological information. Of note, the ADNI cohort features different

ites and scanners, and previous work demonstrated that harmonization

cross sites improves machine learning models ( Chen et al., 2020 ). 

We selected the ComBat harmonization technique to eliminate

he cohort effect after following a similar analysis suggested by

ortin et al. (2018) (see Supplementary materials). 

.4.2. Data pre-processing 

The computational time complexity of the SuStaIn algorithm scales

xponentially with the number of input features. Thus, to make com-

utations feasible, the 80 cortical and subcortical regional volumes

rom the Desikan-Killiany atlas were grouped to derive the volume

f 13 regions (accumbens area, amygdala, caudate, hippocampus, in-

ula, pallidum, putamen, thalamus, cingulate, frontal lobe, parietal

obe, temporal lobe, occipital lobe) according to the lobe group-

ngs provided by FreeSurferWiki ( https://surfer.nmr.mgh.harvard.edu/

swiki/CorticalParcellation ). For each of the 13 regional volume vari-

bles, we removed the effect of age, sex and ICV using a linear regression

odel. Then we expressed the values of these variables as z-scores rel-

tive to the cohort’s control population (see above). The z-scores’ signs

ere adjusted such that increases correspond to increasing pathology. 

.5. Subtype and stage inference (SuStaIn) 

The SuStaIn algorithm, introduced by Young et al. (2018) , uses unsu-

ervised learning to uncover data-driven disease subtypes with distinct

emporal progression patterns. SuStaIn is a continuous generalisation of

he event-based model (EBM; Fonteijn et al., 2012 ; Young et al., 2014 ).

hile the EBM describes disease progression as a single event sequence
4 
 𝐸 1 , 𝐸 2 , ..., 𝐸 𝑁 

) where each event is defined as the value of a biomarker

urning from normal to abnormal, SuStaIn allows for multiple event se-

uences. Each event is the value of a biomarker reaching/exceeding a

-score cut-off, each sequence defines a disease progression subtype, and

he position in an event sequence defines disease progression stage as

ccumulated events. During training, SuStaIn simultaneously finds the

ptimal solutions of subtype membership, subtype trajectory and the

osterior distributions of both. In brief, one can think of SuStaIn as a

lustering algorithm that takes the progressive nature of the disease into

ccount. 

The uncertainty in the subtype progression patterns and the pro-

ortion of individuals belonging to each subtypes is estimated using

 Markov Chain Monte Carlo (MCMC)-based procedure ( Young et al.,

018 ). The sequence, or event order, is visualized and examined in a po-

itional variance diagram (PVD) chart. For further mathematical details

ee the Supplementary Materials and Young et al. (2018) for a detailed

escription. 

Like other clustering machine learning models, the number of sub-

ypes in SuStaIn is a hyperparameter and the optimal number of sub-

ypes is generally unknown beforehand. To find the optimal number of

ubtypes for a SuStaIn model, we used tenfold cross-validation to com-

ute the Cross-Validation Information Criterion (CVIC) ( Gelman et al.,

014 ), which captures out-of-sample generalizability. We selected the

umber of subtypes by comparing the values of CVIC as well as inspect-

ng the PVDs. 

To assign subjects to subtypes and stages, SuStaIn first chooses the

ubtype with the highest likelihood (after evaluating the likelihood that

 subject belongs to each subtype by summing over all disease stages).

ext, it selects the stage with the highest likelihood within that sub-

ype. We expect small subtype maximum likelihoods (i.e., low subtype

ertainty) for subjects assigned to stage zero or to late stages. The zero-

tage subjects are those with no obvious abnormalities in the features,

herefore there is not enough signal to confidently support any subtype.

ikewise, subjects at late stages of the disease progression have abnor-

alities distributed across nearly all brain regions in which case the

ifferences in the MRI patterns between subtypes become less distin-

uishable. 

.6. SuStaIn models 

We applied SuStaIn to the ADNI, harmonized ADNI, UKBB and the

armonized UKBB training populations, respectively. The z-score events

nd the distribution of biomarkers in the four training datasets are listed

n Supplementary Table S2. For each of these training populations, the

uStaIn model was fitted up to a maximum of five subtypes and we ob-

ained four SuStaIn models: ADNI SuStaIn, Harmonized ADNI SuStaIn,

KBB SuStaIn and Harmonized UKBB SuStaIn. 

.7. SuStaIn subtyping and staging 

For each subject in the ADNI and UKBB datasets, we assigned sub-

ects to subtypes and stages predicted by three SuStaIn models ( Fig. 1 ).

or example, for a subject in the ADNI dataset, subtype and stage assign-

ent was computed using ADNI SuStaIn, Harmonized ADNI SuStaIn and

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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a  

m  

b

armonized UKBB SuStaIn, respectively. To quantify transferability, we

easured the consistency of subtype and stage assignments by different

odels. 

.8. Association studies 

In our association study, we focused on individuals with atrophy pat-

erns that can be reliably assigned to a SuStaIn, i.e., non-zero stages and

igh subtype certainty ( Prob > 0.8) under a model, and we compared

he individuals’ subtype and stage assignments under different SuStaIn

odels. Additionally, we repeated the analysis at a lower subtype cer-

ainty ( Prob > 0.5). 

We investigated the hypothesis that AD atrophy subtypes suggested

y SuStaIn are associated with risk factors and biomarkers including

ge, cerebrospinal fluid (CSF) biomarkers and medication history. We

pplied the Kruskal–Wallis test to study the association between SuStaIn

ubtypes and age and CSF biomarkers. In addition, we used linear re-

ression to adjust for age and sex when testing for associations between

ubtype and CSF biomarkers. Chi-Squared Tests, contingency tables and

ogistic regressions were used to assess the associations of SuStaIn sub-

ypes and cholesterol and high blood pressure medications, before and

fter controlling for age and sex. 

. Results 

Our ADNI sample size consists of 795 subjects in total (183 CN, 86

MC, 244 early MCI, 164 late MCI and 118 CE at baseline). Of these,

63 amyloid-negative SMC and CN subjects were defined as a control set

nd the remaining 632 subjects were used for SuStaIn model training. In

he UKBB dataset, we have 36,494 subjects with MRI scans. According to

ur training set and control set criteria, 616 subjects were selected as the

raining population for SuStaIn model fitting (age ranges from 48 to 81

ith a median of 68; 319 females; 288 had at least one family member

ith dementia and were APOE- 𝜀 4 homozygotes; 333 performed poorly

n the AD-related cognitive tests); 262 subjects (age ranges from 48 to

7 with a median of 65; 117 females; with no family member reporting

ementia and not carrying an APOE- 𝜀 4 allele) formed the control set

 Table 1 ). 

Our data harmonization analysis showed that all three harmoniza-

ion techniques performed well in reducing site effects. However, Com-

at presented its unique advantage in harmonizing the variances in the

eatures over other harmonization techniques (Figs. S1, S2, Tables S3–

10). 

.1. Three consistent subtypes with distinct atrophy patterns were identified

rom ADNI and UKBB before and after data harmonization 

We first investigated whether harmonization affects the estimated

odels on the same dataset and whether training using a disease group

ADNI) and the AD at-risk group (UKBB) result in similar SuStaIn mod-

ls. We summarised the findings in Fig. 2 , which shows the PVDs from

he SuStaIn models with 13 biomarkers. 

The CVIC on the ADNI model suggested three subtypes, in line with

he original work ( Young et al., 2018 ). The CIVC on the UKBB model

uggested four subtypes (Fig. S1). However, two of the subtypes in the

KBB model were nearly identical (Fig. S2). This was supported by a

hattacharrya coefficient (BC) of 0.99 between these subtypes (a BC

f 1.0 indicates identical distributions). Thus, we also selected three

ubtypes for the UKBB models. Moreover, having the same number of

ubtypes simplifies the comparison between ADNI and UKBB subtypes,

hich is a key objective of this work. 

These three subtypes agree with the original analysis by

oung et al. (2018) : the ‘typical’ subtype has atrophy starting in

he hippocampus and amygdala, atrophy in the ‘cortical’ subtype

riginates in the lobes, cingulate and insula, while in the ‘subcortical’

ubtype atrophy is first observed in the pallidum, putamen and caudate.
5 
urther, harmonization did not change the subtype patterns in a dataset

s can be seen from the almost identical PVDs for each dataset before

nd after harmonization in Fig. 2 . We also noted that for all subtypes

merging from each of the SuStaIn models, the positional variance,

hich corresponds to the level of uncertainty, increases as disease

rogresses to later stages, which will increase staging uncertainty of

he model towards the end of the disease trajectory. Fig. 3 depicts the

isease progression pattern rendered as brains for each subtype in the

armonized ADNI SuStaIn and Harmonized UKBB SuStaIn models.

urther, Fig. 4 shows the correlation of the most likely biomarker

rdering for each subtype between the models trained on ADNI and

KBB data. The correlation was stronger for the typical ( r = 0.85)

nd cortical ( r = 0.91) subtype compared to the subcortical subtype

 r = 0.61). 

.2. Individual subtype and stage assignments under different sustain 

odels were highly consistent 

After observing that the estimated models are similar between

atasets and are not affected by harmonization, we investigated whether

he subtype and stage assignments are consistent on the subject level.

 high degree of agreement in both dimensions indicates a successful

odel transfer. 

.2.1. High subtype consistency 

Over 91% of subject assignments to subtypes are consistent across

hree models built on different datasets. 

Table 2 shows the subtype consistency for ADNI participants be-

ween the Harmonized ADNI and Harmonized UKBB models. As a sil-

er standard, we focused on the non-zero-stage population with high

ertainly subtype assignments ( > 0.8) under a model. For the 320 sub-

ects that meet the silver standard (i.e., non-zero stage with high cer-

ainly subtype assignments) under at least one of the two models, 292

ave identical subtype assignments between the two models, leading

o a 91% consistency. Requiring the silver standard only for subtyp-

ng by the Harmonized ADNI (UKBB) model, the consistency increases

o 96% (92%). Further, requiring the silver standard by both mod-

ls, only one out of 153 participants received a discordant subtype

ssignment. 

Similarly, for UKBB subjects Table 2 suggests a 95% subtype con-

istency under the two harmonized models. For the 9865 subjects that

eet the silver standard under at least one model, 9356 have identi-

al subtype assignments between the two models (95% consistency).

equiring the silver standard only for subtyping by the Harmonized

DNI (UKBB) model, the consistency increases to 98% (95%). Fur-

her, requiring the silver standard by both models, only 12 out of

845 participants received a discordant subtype assignments (99.8%

onsistency). 

Using the lower subtype certainty cutoff at 0.5, doubled and tripled

he number of subtyped participants in ADNI and UKBB, respectively.

hile the consistency decreased by about 10%, it remained above 80%

Table S12). 

To further highlight the importance of data harmonization when ap-

lying a SuStaIn model trained on an alternative dataset to another,

e examined results of UKBB individual subtype and stage assignments

nder the ADNI SuStaIn model without any data harmonization (Table

3). Only 4% of the total population (1449 subjects) were staged as

on-zero, and 1.7% (631 subjects) received a non-zero stage with high

ubtype certainty – compared to 19% (6956 subjects) when using har-

onization. Only 424 of 631 (67%) participants received concordant

ubtype assignments with the UKB SuStaIn model – compared to 6838 of

956 (98%) when using harmonization. Thus, harmonization results in

 larger fraction of successfully subtyped participants by the transferred

odel and it increases the concordance between subtype assignments

y the original and by the transferred models. 
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Fig. 2. Three consistent subtypes were identified by all SuStaIn models . In the Positional Variance Diagrams (PVDs) of the models each row corresponds to a biomarker 

(regional brain volume) and each coloured entry in a PVD marks the probability that the biomarker has surpassed an event score (here: z-scores) threshold. The 

figures display z-score thresholds of 1.0 (red), 2.0 (magenta) and 3.0 (blue). While a higher z-score reflects a more severe abnormality of the biomarker, a low 

positional variance, which is marked in a clearer colour, and is typically observed at the early stage of a diagram, associates with a higher degree of certainty. For 

instance, in the Harmonized ADNI PVD (b), hippocampal volume reaches high abnormality (z-score > 2, magenta) very early (stage 3) in the typical subtype with 

high certainty (low positional variance, a clear magenta). The PVDs correspond to different training datasets (ADNI and UKBB) and harmonization options: ADNI (a), 

harmonized ADNI (b), UKBB (c) and harmonized UKBB (d). We learned from the following four PVDs that: (1) harmonization did not change the subtype patterns in 

a dataset (see (a) and (b); (c) and (d)); (2) Indistinguishable patterns between subtypes in the late stages of disease trajectory evidenced by the increasing positional 

variance as disease progresses to later stages; (3) Focusing on the early stages, three consistent subtypes were identified by all SuStaIn models: the ‘typical’ subtype 

has atrophy starting in the hippocampus and amygdala, atrophy in the ‘cortical’ subtype originates in the lobes, cingulate and insula, while in the ‘subcortical’ subtype 

atrophy is first observed in the pallidum, putamen and caudate . 
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.2.2. High stage consistency 

Fig. 5 shows the staging consistency across the models for all 795

DNI and all 36,493 UKBB subjects regardless of their subtype certainty.

he harmonization did not influence the staging with the ADNI model

r 2 = 0.999; Fig. 5 a left panel) or the UKBB model (r 2 = 0.996; Fig. 5 b

eft panel). Applying harmonized models across datasets led to reduced

tage correlations on ADNI (r 2 = 0.83; Fig. 5 a right panel) and UKBB

r 2 = 0.68; Fig. 5 b right panel). By comparison, using the unharmonized

DNI model to stage UKBB participants the correlation with UKBB SuS-

aIn staging drops to r 2 = 0.28. Further, on average ADNI subjects re-

eived higher stages by Harmonized UKBB model compared to the Har-

onized ADNI model (regression slope > 1), while this observation was

eversed for UKBB subjects (regression slope < 1). 
t  

6 
In contrast to using all available subjects, Fig. 6 compares the Harmo-

ized ADNI and Harmonized UKBB models for non-zero stage subjects

nd with high certainty subtype assignments ( > 0.8) under the Harmo-

ized ADNI Model and suggests comparable consistency between these

wo models. 

.3. Participants atrophy subtype was found to be associated with age, CSF

iomarkers, cholesterol and high blood pressure medications 

The previous results demonstrated that harmonization enables us to

ransfer models across datasets. Next, we investigated how risk factors

nd biomarkers are associated with subtypes under the harmonized SuS-

aIn models. Table 3 shows an overview of the demographics of ADNI
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Fig. 3. Representation of the three subtypes in brain space 

for the Harmonized ADNI SuStaIn and for the Harmonized 

UKBB SuStaIn models. 
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nd UKBB subjects assigned to each subtype that meet the silver stan-

ard under the Harmonized ADNI SuStaIn model (i.e., with non-zero

tage and subtype certainty > 0.8). In the ADNI dataset, the association

tudy population has 219 subjects and in the UKBB dataset, there are

956 subjects. At the more lenient subtype certainty cutoff of 0.5, there

ere 455 and 17,315 subtyped subjects in ADNI and UKBB, respectively.

The average age is highest in the typical subtype and lowest in the subcor-

ical subtype. In both the ADNI and UKBB datasets, there was a statisti-

ally significant age difference between the typical and the subcortical

ubtypes (p-value = 0.001 in ADNI and p < 0.0001 in UKBB; Fig. 7 top

ow), where subjects assigned to the typical subtype were older com-
7 
ared to subjects with the subcortical subtype. Similar results hold for

ubjects that meet the silver standard under the Harmonized UKBB SuS-

aIn model ( Fig. 7 ; bottom row). 

Subjects assigned to the typical subtype exhibit lower A 𝛽 and higher tau

nd p-tau values. We further compared the 185 (82 females) ADNI sub-

ects with CSF measures which consisted of 99 subjects in the typical

ubtype, 65 in the cortical subtype and 21 in the subcortical subtype.

he Kruskal-Wallis H-Test showed significant differences amongst the

ubtypes and the typical subtype subjects were associated with more

D-like A 𝛽 and tau measures ( Fig. 8 ; top row). This result remained

ignificant after controlling for age and sex in a regression model: A 𝛽
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Fig. 4. Agreement between the biomarker ordering for each subtype between the SuStaIn models trained on ADNI and UKBB data . In the scatter plots, each mark represented 

the expected values of the stage of a biomarker at a particular z-score (1.0: red, 2.0: magenta and 3.0: blue) in the Harmonized ADNI (x-axis) and Harmonized UKBB 

(y-axis) models for a particular subtype. Different shapes correspond to different brain regions. The expected value of the stage was calculated as the expectation of 

the stage under the subtype model: ̄𝑘 = 
𝐾 ∑

1 
𝑘𝑝 ( 𝑘 ) . As an example, the first chart shows that for the typical subtype, amygdala reaching a z-score of 1 at stage 2 in both 

the Harmonized ADNI and the Harmonized UKBB models, and reaching a z-score of 2 at stage 4 in both models and a z-score of 3 at stage 23 in the Harmonized ADNI 

model and at stage 14 in the Harmonized UKBB model. The high correlation between stage orderings (i.e., close to the diagonal line) indicates strong agreement 

between the models for the typical and cortical subtypes, and weaker for the subcortical subtype. 

Table 2 

Consistency of subject-level subtype assignments under different sustain models. 

Typical Cortical Subcortical 

silver ML silver ML silver ML 

ADNI 

UKBB Typical silver 75 7 0 0 0 0 

ML 41 – 0 – 0 –

Cortical silver 1 9 64 54 0 7 

ML 3 – 9 – 1 –

Subcortical silver 0 3 0 0 13 18 

ML 4 – 0 – 11 –

UKBB 

ADNI Typical silver 429 359 0 22 0 3 

ML 106 – 152 – 22 –

Cortical silver 0 1 2732 908 0 0 

ML 1 – 1638 – 0 –

Subcortical silver 0 9 12 66 1672 743 

ML 0 – 221 – 769 –

Columns indicate the subtypes assigned by the reference model, i.e., the model trained on the dataset where it is applied to. Rows 

indicate the subtypes assigned by the transferred model (e.g., the model trained on UKBB but applied to ADNI data). Subtype 

assignments are separated into whether they satisfy the ‘silver’ standard (subtype Prob > 0.8; silver) or whether they are simply the 

maximum likelihood assignment (ML). Bold font along the diagonals indicate agreement by the two models. 

Table 3 

Demographics of ADNI and UKBB subjects assigned to each subtype under the Harmonized ADNI model with non-zero stage and high subtype 

certainty. 

Dataset ADNI (219) UKBB (6956) 

Subtype Typical Cortical Subcortical Typical Cortical Subcortical 

Total 119 75 25 813 3641 2502 

CN/SMC/Early MCI/Late MCI/AD 6/2/24/44/43 18/8/15/19/15 5/3/8/6/3 NA NA NA 

Female/Male 51/68 39/36 9/16 285/528 2399/1242 1334/1168 

APOE-4 (0/1/2/NA) 43/48/26/0 45/18/12/0 18/6/1/0 451/183/36/143 2117/764/63/697 1444/565/49/444 

APOE-2 (0/1/2/NA) NA NA NA 604/93/6/110 2601/472/16/552 1881/274/15/332 

AGE(min/med/max) 56/74/89 55/72/85 55/69/79 46/66/80 46/66/81 45/61/80 

Amyloid (neg/pos/NA) 19/75/25 31/32/12 17/07/1 NA NA NA 

8 
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Fig. 5. Subject-level stage consistency across dif- 

ferent SuStaIn Models . The left panel in (a) 

shows that the subject-level stage assignments 

for all 795 ADNI subjects under the ADNI and 

Harmonized ADNI model were almost identi- 

cal: the dots in the scatter plot distribute closely 

around the 45-degree line that goes through the 

origin, with an OLS regression coefficient being 

0.9999 and a r-square of 99.9%. The right panel 

in (a) shows the correlation between stages pro- 

vided the Harmonized ADNI and Harmonized 

UKBB models, with an OLS regression coeffi- 

cient being 1.1297 and a r-square of 83.0%. Al- 

though the individuals, especially those in the 

late stages, were assigned to a slightly higher 

stage in the Harmonized UKBB model com- 

pared to in the Harmonized ADNI model (re- 

sulting in a coefficient being larger than one 

in the OLS regression line). Similarly, the left 

panel in (b) shows that the subject-level stage 

assignments for all 36,493 UKBB subjects under 

the UKBB and Harmonized UKBB model were 

almost identical: the dots in the scatter plot dis- 

tribute closely around the 45-degree line that 

goes through the origin, with an OLS regres- 

sion coefficient being 1.0016 and an r-square 

of 99.6%. The right panel in (b) shows the 

alignment of stages between the Harmonized 

ADNI and Harmonized UKBB models, with an 

r-square of 68.1% and an OLS coefficient of 

0.6932. 

Fig. 6. Subject-level stage consistency between the Harmonized ADNI SuStaIn and the Harmonized UKBB SuStaIn Models stratified by subtype . Density plots grouped by 

subtypes for ADNI (219 subjects) and UKBB (6956) non zero-stage subjects with high certainty ( > 0.8) subtype under the Harmonized ADNI Model: The majority of 

the subjects have consistent stage assignments under the Harmonized ADNI SuStaIn and Harmonized UKBB SuStaIn models, especially those at early stages. 

9 



H. Chen, A. Young, N.P. Oxtoby et al. NeuroImage 271 (2023) 120005 

Fig. 7. The average age is highest in the typical subtype and lowest in the subcortical subtype . Subtype and age association for ADNI subjects (left column) and UKBB 

subjects (right column) meeting the silver standard under the Harmonized ADNI model (top row; ADNI: 219 in total: 119 typical, 75 cortical and 25 subcortical; 

UKBB: 6956 in total: 813 typical, 3641 cortical and 2502 subcortical) and the Harmonized UKBB model (bottom row; ADNI: 251 in total: 95 typical, 118 cortical 

and 38 subcortical; UKBB: 7754 in total: 536 typical, 4755 cortical and 2463 subcortical) respectively: the average age is highest in the typical subtype and lowest 

in the subcortical subtype. 
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p = 0.014), tau (p = 0.026) and p-tau (p = 0.001) . Conclusions remained

nchanged when using the Harmonized UKBB SuStaIn model to subtype

he ADNI subjects ( Fig. 8 ; bottom row). Furthermore, the biomarker as-

ociations were not sensitive to the subtype certainty threshold (Table

13). 

In comparison to the subcortical subtype, the cortical subtype subjects

re more likely to associate with cholesterol and high blood pressure medica-

ions. SuStaIn subtypes (as assigned by the Harmonized ADNI model) dif-

ered both in cholesterol and high blood pressure medications ( Table 4 ;

 < 0.0001). Specifically, using regression models with adjustment for

ge and sex, compared to the cortical subtype, the subcortical subtype

emonstrated a lower proportion using both medications (cholesterol:

 = 0.005, OR = 0.82; blood pressure p < 0.0001, OR = 0.75). The same

olds true for the typical subtype compared to the cortical subtype

cholesterol: p = 0.012, OR = 0.80; blood pressure p = 0.001, OR = 0.74).

imilar observations were drawn using the Harmonized UKBB model

or subtyping ( Table 4 ). However, after controlling for age and sex, the

ssociations were only significant for blood pressure medication in the

ubcortical subtype ( p < 0.0001, OR = 0.32). Again, the subtype certainty

hreshold did not affect these conclusions (Table S14). 

. Discussion 

In this work, we presented results of building subtyping and staging

odels across ADNI and UKBB that represent different time windows

uring the disease to better investigate the link between AD atrophy

ubtypes and early risk factors. We proposed that a subtype model (i.e.,

 SuStaIn model) is first built on the dataset with detailed disease-related
10 
nformation (e.g., ADNI), and then applied to the UKBB dataset for in-

ividual subtyping and investigating of early risk factor associations. 

In previous studies, it was pointed out that ADNI participants

ere not representative of the wider general population so that data-

riven studies on ADNI data may not necessarily ensure general-

zability ( Veitch et al., 2021 ). Further, the heterogeneity in cohort

atasets in the reproducibility of data-driven results has been discussed

 Birkenbihl et al., 2021 ). Our findings in this study answered many prac-

ical questions raised in training and transferring data driven disease

rogression models across datasets: (1) consistent subtypes emerged

rom the ADNI cohort and the UKBB AD-at-risk cohort, (2) ComBat,

 data harmonization technique, helped to remove cohort effects on

iomarkers for these two datasets, and (3) a model trained on ADNI

an be robustly applied to UKBB after appropriate data harmonization. 

Across various pre-processing settings and datasets SuStaIn identi-

ed three subtypes characterised by distinct temporal patterns of grey

atter volume changes. These subtypes differ in their origin of atro-

hy and are consistent with previous analyses on the ADNI dataset

 Young et al., 2018 ). The subtypes are referred to by their character-

stic pattern of temporal progression as ‘typical’, ‘cortical’ and ‘subcor-

ical’. The three subtypes were explored in depth in their cognitive and

iomarker profile in research datasets as well as in clinical datasets

 Archetti et al., 2021 ; Young et al., 2018 ). 

One of our interesting findings is that the SuStaIn model built on the

D-at-risk population constructed from the UKBB dataset resulted in

he same atrophy subtypes as those on ADNI; obviously with a different

revalence between the cohorts. This is remarkable, since there were

o subjects with a clinical AD diagnosis among the UKBB training set.
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Fig. 8. The typical subtype subjects are associated with statistically worse CSF biomarkers (A 𝛽, tau and p-tau) values in comparison to the cortical subtype . Subtype and CSF 

biomarkers association for ADNI with CSF measures at baseline and meeting the silver standard under the Harmonized ADNI SuStaIn model (top row; 185 in total; 

99 typical, 65 cortical and 21 subcortical) and under the Harmonized UKBB SuStaIn model (bottom row; 203 in total; 64 typical, 113 cortical and 26 subcortical), 

respectively. The typical subtype subjects are associated with lower A 𝛽 and higher tau and p-tau values in comparison to the cortical subtype. 
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his finding first supports the subtypes per-se as an existing pattern, and

econdly, alludes to the possibility to observe the emergence of different

trophy patterns during the prodromal phase of Alzheimer’s disease. 

Transferring machine learning models to novel datasets in general

s an ongoing challenge due to bias and covariate shifts occurring dur-

ng data acquisition. It was demonstrated in a recent study that SuStaIn

ould be transferred from ADNI to a mixture of clinical and pre-clinical

ohorts including OASIS, Pharma-Cog and ViTA ( Archetti et al., 2021 ).

ifferent to OASIS, a relatively small disease cohort that covers the full

pectrum of the disease progression like ADNI, UKBB is a large dataset

hat represents a much earlier time window even before the disease

tarts to emerge. Thus, our work suggests a possible route to further

nvestigating the link between AD atrophy subtypes and early risk fac-

ors that are collected in large population cohorts such as UKBB. 

To facilitate the analysis across ADNI and UK Biobank, we applied

omBat, a data harmonization technique to the two datasets and we

emonstrated that harmonization is important to successfully trans-

er the trained models. In our harmonization analysis, we studied the

mpact of different cohorts (ADNI vs UKBB) where cohort differences

riginate from biological variation (age, disease status etc.) and tech-

ical variation (scanner manufacturer, scanning protocol, processing

ipelines). Since the FreeSurfer version and cohort have a one-to-one

apping relationship in this study, the impact of differing FreeSurfer

ersions is addressed as part of our data harmonization study – see de-

ails in the supplementary materials (e.g., Figs S3, S4 and Table S4–S11).

Adding harmonization to the biomarker pre-processing pipeline did

ot affect the estimated models: models estimated on the same dataset

efore and after harmonization where we found almost identical (99%

imilarity). This was expected since SuStaIn converts biomarker values

o z-scores with reference to a control population. Thus, any shift or

caling applied to each feature will be removed and the resulting mod-

ls are identical. However, the harmonization removes cohort-specific

ias and therefore mainly enables the successful transfer of the SuStaIn
11 
odel to external datasets, according to our definition of a successful

ransfer as outlined in the Introduction section. We further showed that

armonization was essential to achieve a high consistency in individu-

ls’ subtypes and stage assignment based on the different models. While

ubject-level subtype consistency was generally very high across exper-

ments ( > 91%), the correlation of the subject-level stages was lower

e.g., r 2 = 0.68 on the UKBB data) but was a considerable improvement

rom using unharmonized models (r 2 = 0.28). The lower staging agree-

ent has two main sources. Firstly, although the progression sequences

stimated for each subtype from ADNI and UKBB were similar, they

ere not identical ( Fig. 4 ). Secondly, discordant subtyping by models

egatively impacts the agreement between staging. 

A further alternative is to combine the harmonized datasets prior to

odel training. Such a model could potentially add value to situations

here there are not enough early-stage subjects in the disease cohort.

ndeed, when testing this approach, we observed that (1) the three sub-

ypes are consistent with other models, and (2) stage assignments are

ighly consistent with both the Harmonized ADNI SuStaIn and Harmo-

ized UKBB models (data not shown). 

Linking the patterns of MRI abnormality in the subtypes to clinical

henotypes, other biomarkers, comorbidities, genetic and life-style fac-

ors could provide new insights into disease mechanisms. Thus, under-

tanding the association of these factors with subtypes emergence may

id in stratifying patients at early stages for precision medicine and mul-

idomain interventional studies such as those explored in the FINGER

rial ( Ngandu et al., 2015 ). We investigated the associations of subtypes

ith a few selected variables from ADNI and from UK Biobank. On ADNI

e focused on associations with other known AD-related biomarkers

uch as levels of A 𝛽 and tau in the CSF. Our results suggested that the

ypical subtype was associated with statistically worse CSF biomarkers

alues (i.e., more AD-like) in comparison to the other two subtypes, be-

ore and after controlling for age and sex. This finding is in line with

revious observations that MCI subjects assigned to the typical subtype
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Table 4 

The cortical subtype subjects are more likely to associate with cholesterol and high blood pressure medications compared to the subcortical subtype. Results remain significant 

after controlling for age and sex . For the non zero-stage UKBB subjects with high subtype certainty ( > 0.8) under the Harmonized ADNI model (6956 subjects), there 

were significant differences between SuStaIn subtypes in both cholesterol and high blood pressure medications ( p < 0.001). Specifically, using regression models 

with adjustment for age and sex, compared to the cortical subtype, the subcortical subtype has the lower proportion associated with both medications (cholesterol: 

p = 0.005; blood pressure p < 0.001). The same held true for the typical subtype compared to the cortical subtype (cholesterol: p = 0.012; blood pressure p < 0.001). 

Some of these observations were drawn using the Harmonized UKBB and UKBB models although after controlling for age and sex, the associations were only 

significant for blood pressure medication in the subcortical subtype ( p < 0.001). 

Chi-Squared Tests and Contingency Table Logistic Regression 

Model Sample Size P-Value Status Typical Cortical Subcortical Typical Subcortical AGE SEX 

Cholesterol 

Lowering 

Harmonized 

ADNI 

SuStaIn 

6956 < 0.001 0 597 2703 2038 coef − 0.22 − 0.20 0.10 1.06 

1 216 938 464 p-values 0.012 0.005 < 0.001 < 0.001 

27% 26% 19% 

Blood 

Pressure 

< 0.001 0 608 2643 2022 coef − 0.30 − 0.29 0.07 0.69 

1 205 998 480 p-values 0.001 < 0.001 < 0.001 < 0.001 

25% 27% 19% 

Cholesterol 

Lowering 

Harmonized 

UKBB 

SuStaIn 

9482 < 0.001 0 381 4537 2372 coef 0.00 − 0.11 0.10 0.96 

1 153 1475 564 p-values 0.98 0.09 < 0.001 < 0.001 

29% 25% 19% 

Blood 

Pressure 

< 0.001 0 385 4454 2375 coef − 0.12 − 0.33 0.07 0.65 

1 149 1558 561 p-values 0.23 < 0.001 < 0.001 < 0.001 

28% 26% 19% 

Cholesterol 

Lowering 

UKBB 

SuStaIn 

7669 < 0.001 0 384 3423 1968 coef 0.02 − 0.10 0.09 0.97 

1 185 1174 535 p-values 0.83 0.12 < 0.001 < 0.001 

33% 26% 21% 

Blood 

Pressure 

< 0.001 0 392 3315 1992 coef − 0.10 − 0.32 0.07 0.67 

1 177 1282 511 p-values 0.32 < 0.001 < 0.001 < 0.001 

31% 28% 20% 

Significant results related to subtype assignments are highlighted in bold font. The column ‘status’ indicates the status of medication usage (0 = no, 1 = yes). Percentages 

refer to the medication users per subtype. 
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m  
ave a highest risk to progress from MCI to AD ( Young et al., 2018 ).

n UKBB, we focused on variables that may contribute to the subtype

mergence but are not readily available in ADNI. Therefore, showcas-

ng the benefit of transferring SuStaIn models. Our results suggested that

he subcortical subtype was associated with a statistically lower likeli-

ood of cholesterol and high blood pressure medication use in compar-

son to the cortical subtype, before and after controlling for age and

ex. 

While early hippocampal involvement in the typical subtype may

xplain more severe CSF biomarkers pathology, the reason for partici-

ants assigned to the cortical subtype having higher likelihood of choles-

erol and high blood pressure medications use is unclear. Previous stud-

es have demonstrated a link between cholesterol and AD pathology

 Di Paolo and Kim, 2011 ) and statins, a class of cholesterol lowering

rugs, are routinely used in the treatment of AD patients. Likewise, mid-

ife elevated blood pressure was associated with increased atrophy in

rain regions linked to AD ( Lane et al., 2019 ; Power et al., 2016 ). More

roadly, hypertension has been identified as one of the modifiable mid-

ife risk factors contributing to AD ( Livingston et al., 2020 ). Potential ex-

lanations for the linkages between cholesterol and high blood pressure

nd AD subtypes could be that hypertension is associated with specific

ower regional grey matter volume ( Gianaros et al., 2006 ; Schaare et al.,

019 ). Further studies are needed for a better understanding of these as-

ociations. 

A key limitation in this work is that, due to the lack of such informa-

ion in the dataset, for models built in UKBB, we were unable to use AD

iagnosis (CN, MCI or AD), AD biomarkers such as CSF and PET mea-

urements, or cognitive tests tailored for diagnosing AD in the construc-

ion of control and training sets as well as in the subtype evaluation. We

sed variables that are highly correlated with the disease including the

umbers of APOE- 𝜀 4 allele, family history of AD cognitive tests available

o identify groups that are least and most likely to develop the disease

s the control and training sets, respectively. We also excluded subjects

ith non-AD self-reported neurological or psychiatric disorders. Also,

e transferred the models only between two datasets. Future work on

ransferring SuStaIn to additional datasets would help to generalize the

ndings from this study. 
12 
Another limitation is that all the harmonization methods examined

nd employed in this work attempt to capture mostly the linear rela-

ionship between cohorts and volume metrics. Improvements over Com-

at that consider the co-variance of features have been proposed (e.g.,

ovBat ( Chen et al., 2020 )). Furthermore, while ComBat demonstrated

trong efficacy in removing cohort effect for data in ADNI and UKBB, it

oes not support an efficient extension of the analysis to new datasets.

n practice, when applying SuStaIn built on ADNI to a new dataset, one

ould need to repeat the process of first harmonizing the new dataset

ith ADNI. Future study of harmonization methods could include Hi-

rarchical Bayesian Regression (HBR) ( Kia et al., 2020 ) which allows

pplying a SuStaIn model on new dataset without repeating model fit-

ing processes. 

While the methodology presented in this paper was based on volume

etrics, in principle following the same methodology, one can gener-

lise to other brain morphological measures (e.g., thickness metrics) and

o non-imaging metrics. In fact, the work by Fortin et al. applied ComBat

o harmonize cortical thickness ( Fortin et al., 2018 ) and diffusion tensor

maging metrics ( Fortin et al., 2017 ). Thus, if such features were useful

ithin a SuStaIn model, then they could be successfully harmonized. 

In conclusion, to study the association of AD atrophy subtypes with a

road range of risk factors, we proposed to harmonize the disease cohort

nd the aging cohort using ComBat, and to apply the SuStaIn model on

he disease cohort which is used to subtyping and staging subjects in the

ging cohort. Our methodology enabled further detailed investigations

n the linkage of clinicopathological late-stage to earlier risk factors,

hich has the potential to lead to a better understanding of the disease

etiology and to help avoid lifestyle and behaviour choices that puts

ndividuals at risk. 

ata and code availability statement 

The data used in this work are available upon appli-

ation to the Alzheimer’s disease neuroimaging imitative

ADNI; http://adni.loni.usc.edu/ ) and the UK BioBank (UKBB;

ttps://www.ukbiobank.ac.uk/ ). The SuStaIn algorithm imple-

ented in Python (pySuStaIn) is open source and available at

http://adni.loni.usc.edu/
https://www.ukbiobank.ac.uk/
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vailable upon request. 
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